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ON A VARIATIONAL FORMULA AND ITS APPLICATION 
TO CONTACT PROBLEMS OF ELASTICITY THEORY* 

N.M. BORODACHEV 

A variational formula is obtained for the spatial contact problem (CP) 

of the theory of elasticity. This formula determines the variation of 

the normal stress on the contact area caused by a variation in the contact 

area outline. The efficiency of the variational formula is shown for 

constructing an asymptotic expansion for the spatial CP with a continuous 

line of separation of the boundary conditions. The solution of the CP 

is considered in detail for an elastic half-space when the contact area 

differs slightly from a circle. A survey of applications of asymptotic 

methods to the CP of elasticity theory is given in /I, 2/. Solutions of 

the spatial CP with a continuous line of separation of the boundary con- 

ditions obtained by other methods are presented in /3-6/. 

1. We use a rectangular coordinates system 21, x21 2% We consider a linearly elastic 

body occupying the simply connected volume V. Let the surface 0 bounding this volume consist 

of a certain surface 0, and a plane surface 0, whose equation is xJ = 0. A stiff cylindrical 

stamp of arbitrary section is impressed in the plane surface of the body 0,. The stamp base 

has the shape of a convex surface. The equation of the base surface of the stamp has the 

form 
XI) = -10 (x1, xa) (1.1) 

The plane surface 0, here will be separated into two parts: the contact area (CA) 0, and 

the surface 0,. 
We consider the magnitude and line of action of the force P such that the contact area 

0, coincides with the transverse section of a stiff cylinder (stamp). The surface 0, is 
stress-free while a static boundary condition is given on the surface 0,. The shear stress 

on the CA 0, equals zero. The projection of the displacement vector on the xa axis within 

the limits of the CA will be expressed by the formula 

ua (x1, Xl? 0) = c - B&r1 + B1% - f0 (511 4, (x1, xa) c 0, 

We denote the boundary outline of the CA by ra. We magnify the size of the CA by dis- 

placing the outline r0 to the nearby position r. We here direct the variation 6n(M) at 

each point M of the CA outline along the outer normal to the curve r,. In this case the 

following relationship /7/ will hold 

s ‘K,a(M)Sn(M)ds=-++~S’S UQ (0) 4,~ (Q) dS 
r. 4 

(1.2) 

where K1 is the compressive normal stress intensity factor, p is the shear modulus, Y is 

Poisson's ratio, ass(Q) is the normal stress at the CA and &a,, is the variation of the 

stress es8 caused by variation of the CA outline 6% 

In a special case (for K, = 0) a formula follows from (1.2) which was applied success- 

fully earlier /8, 9/ to solve the CP. 

2. We consider two states of a given body by ascribing the respective superscripts (1) 

and (2). We also consider the total state for which 

us = kP’ (Q) + uP (Q), UQII = up (Q) + a,,(4) (Q) (2.1) 
K, = K,(l) (M) f K,c” (M), M E ror Q E Oa 

Substituting (2.1) into (1.2) and using the theorem on reciprocity of work, we obtain 
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(2.2) 

In the axial symmetry case this expression simplifies and takes the form 

n 

K(l’K(a’& = 
1 1 

2P - 
-n s ruy (r) 6,cg (r) dr 

0 

(2.3) 

where a is the radius of a circle (the domain o,), and 6a is the variation of the CA radius. 
It hence follows that if K,(*) and usa (r) 
quantity KS) 

are known for some axisyrmnetric CA then the 
can be found by means of (2.3) for any other axisyvuaetric CA. 

Let us examine the special case of (2.2) when u,(n (0) = u&(@Qr), where 6 (Q, Qr) is 
the delta function. The intensity factor in this case is denoted by Kr(')(i%f;&). Then for 

QI E 0, we will have (we omit the superscripts (1) and (2)): 

&pa3 (Q1) = - v K,* (M; Q1) K:O’ (M) 6n (M)ds 

where K,* (M; QJ corresponds to ua (Q) = 6(Q,Q1) while K,c”) (M) corresponds to a given 
displacement us(Q) on the CA. Formula (2.4) expresses the variation of the normal stress 
on the CA caused by variation of the CA outline. 

It follows from (1.2) that 

where W is the strain potential energy and S,W is the variation of the strain potential 
energy caused by variation of the CA outline. 

We set K1 = UK,* + K,(O) in (2.5). Then (2.4) can also be represented in the same form 

&l%, = a (&Iw)lauILT* (2.6) 
In a certain sense relationship (2.6) is the analogue of a well-known formula in 

structural mechanics. 

ro 

We will examine the special case of (2.4) when the CA 0, is a circle of radius awhile 
is a circle of the same radius. In this case by using cylindrical coordinates r, 0, s 

we obtain 

&&u, (r, e) = - y s an K,* 6~; r, 0) Ki” (cp) 6n (cp) dcp 
0 

where cp is the polar angle corresponding to the point M. 
The variational formulas (2.4) and (2.7) turned out to be quite effective for solving 

the spatial CP of elasticity theory with a complex line of separation of the boundary con- 
ditions. 

3. We consider the CP for the elastic body from Sect.1. 
denoted by I'. Let the curve r 

The CA boundary outline is 
deviate slightly from the circle of radius a (the curve r,). 

The equation of the CA boundary outline in polar coordinates 

p =a[1 +Ef(Cp)), Eel 

where f (cp) is a certain piecewise-continuous function. 
The normal stress distribution law u, (r, 0) on the CA S 

problem. We will seek the unknown function 0, (r, 0) in the 
in a small parameter 

has the form 

(3.1) 

should be found by solving this 
form of an asymptotic expansion 

0, (r, e) = U.(O) (r, e) f EU,(~) tr, e) + 0 tc*) (3.2) 

where ~,(~)(r,@) is the solution of the unperturbed problem (for a circular contact area). 
It is proposed to use the variational formula (2.7) to find the function a,(r) (r, e) . 

Taking into account that 

Sn (v) = eaf (cp), 8,~. (r, e) = eu,(') (r, e) 

and using (2.7), we find 
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up (r, 0) = - ?EgI?!k s KI* (cp; rT 0) K? (cp) f (cp) dq 
0 

The quantities K,* and K,t”) in (3.3) are determined for a circular CA of radius a. 
Therefore, the asymptotic expansion (3.2) has been constructed. The CP for which the 

CA outline r is determined by (3.1), is here reduced to a problem with a circular CA. 
For the solution obtained to be completed it is necessary to know the function e$O) (I*,@), 

k;* (cp; r’t @) and iiT,( They can be determined if the form oftheelastic body for which the 
CP is solved is made specific. The simplest results are obtained if the elastic body occupies 
a half-space. Consequently, we will consider the spatial CP below for an elastic half-space 
when the equation of the CA boundary outline has the form (3.1). To solve this problem it 
is necessary to have the solution of the corresponding problem with a circular CA. Anumber 
of methods has been proposed /l/, to solve the CP for an elastic half-space with a circular 
CA. However, the solution obtained below is most convenient for investigating the problem in 
question. 

4. We consider the CP for an elastic isotropic half-space with a circular CA. We assume 
that friction forces on the CA not ot occur between the stamp and the half-space, an that 
there are no load on the half-space outside the stamp. The integral equation of this problem 
has the form 

We seek the solution of (4.1) in the form 

u: (r, 6) = i a;, (r) cos n0 (r <a) 
n==o 

(4.21 

r.e., we consider the stress aZ(r,f+) to be symmetric with respect to 0 = 0. In this case 

Substituting (4.2) and (4.3) into (4.1), we find after calculations 

(4.3) 

Formulas (4.2)-(4.4) yield the solution of the CP for an elastic half-space in the 
presence of a circular CA. Furthermore, an expression can be obtained for the compressive 
stress intensity factor. We have 

K,(@=- I;:_ [Z”(a - r)‘Jlu,(r, e)] 

Substituting (4.2) and (4.4) here, we find 

Let us examine the special case when 

u. (r, 0) = 96 (r - r&5 (0) 

where 6 09 is the delta function. In this case (4.5) yields 

(4.5) 

&* W = - 
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where so = 1, e, = 2 for n> 0. Summing the series, we finally obtain 

5. It is now possible to return to the CP for an elastic half-space when the CA outline 
r is given by (3.1). 

We will assume (for the simplified problem) that the CA S has two axes of symmetry and a 
force P is directed along the s axis that passes through the centre of gravity of the CA. In 
this case the stamp will be impressed strictly translationally (without rotation) into the 
elastic half-space and the displacement of the half-space surface within the limits of the CA 
will have the form 

% (r, 0) = c - fo @', 0) (5.1) 

The solution of this problem is given by (3.2). The stress q(O) (r, 0) in (3.2) can be 
found by using expressions (4.2) and (4.4). To determine the function c?*(l) (r, e), (3.3) 
should be used. By using 14.6) we finally find from (3.3) 

u (a, (~1 = u”W”) (cp)f b) 

The Kr(O)(cp) in this formula is defined for a circular CA depending on the function 
u, (r,6)= c -fo(r,e). The formula (4.5) can be used to find the quantity K{"'. 

Therefore, the asymptotic expansion (3.2) that yields the solution of the CP under con- 
sideration is constructed. 

We will examine certain properties of the function u,@)(r,8). We multiply both sides of 
the first formula in (5.2) by (a% - r*)1/*. Then the integral on the right-hand side of the 
formula obtained is a Poisson integral. Therefore, the expression (a* - r2)%,(‘) (r, e) is a 
harmonic function within the circle r<U and v(B, cp) is the limit value of this function 
on the circumference of this circle, i.e., 

lim [(aa - r”)?i*cr,(l) (r, @I = u’~*K:,(@) (q)f (T) 
r-+--ta, e--trp 

The function v(a,m) and therefore f(cp) can also be an arbitrary piecewise-continuous 
function. 

6. Let us consider examples of the use of the solution obtained. Let the stamp have a 
flat base. In this case fo(r,ej=O and 

21°C op (r, 0) 5.z - ~_ q’ (gr) = 
2s" 

n(l- v)(aa - ,a)% * n(i-v)a’/* 

Substituting (b.1) into (3.2) and (5.2), we find 

0, (P, e) = - WC 
f 

n’F (r, 0) 

P (1 - v) (9 - rp i-e- +u(sy 
iI* - t* 1 

sn 
2 = 

F cr. 0) = 2n s (aa - 3 f (vf drp 
o o*+r*-tnrcos(lfl-e) 

(6.9 

f-1 

It can be seen from an examination of the expression in the square brackets in the first 
formula in (6.2) that the assumption of smallness of the perturbations is violated near the 
critical point r= d. Consequently, the solution obtained is not uniformly suitable near the 
critical point. Uniform suitability of the expansion (6.2) can be restored by applying the 
method of deformed coordinates /lo/. 

We replace r in (6.2) by a slightly deformed coordinate r. 

r=~+v(be) 

Substituting (6.3) into (6.2) we obtain 

(6.3) 

By Lighthill's principle, higher-order approximations should not have a stronger 
singularity than the first approximation. On this basis we set 

y @or 0) = r,F (ro. 8) (6.5) 
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Substituting (6.5) into (6.4) we will have 

s* (ro, 8) = - 2ctc 
s (i _ V) 19 - ep (ret et] w - bP + 0 ~9 

Returning to the variable r we finally find 

u, (r, e) = - +c 
n(l-Y)([1+2eF(r,9)]a'-r q,, + 0 w (6.6) 

Formula (6.6) determines the stress 0, on the CA S whose boundary outline is described 
by (3.1). The function F(r.8) in (6.6) can be found by means of (6.2). Thereforeexpression 
(6.6) yields the complete solution of the CP in question for a stamp with a flat base. 

A specific CA shape must be given, i.e., the function f(cp), to show the course of the 
further calculations. For instance, let the CA boundary contour S be an ellipse with semi- 
axes (14e)a and a. In this case, 

f fcp) = CO.+ ‘p, F cr, ef = (IIP + fl ens 2e)/(2~a) 
Changing to rectangular coordinatesin (6.6) and using (6.7) we obtain 

Furthermore, if the relationship 

is taken into account, the depth of stamp impression can be determined 

The exact solution of this problem , when the CA is an ellipse with 
and a, has the form 

semi-axes 

(6.7) 

(6.8) 

W) 

(1 + 8) a 

where K(k) is the complete elliptic integral of the first kind. 
If (6.10) is expanded in a power series in e, we arrive at (6.8) and (6.9). 
We will estimate the error that results from using (6.8). To do this we examine the 

quantity 

jS.10) 

For instance, B = 0.985 for e =O.Z. Since the quantity B is the ratio of stresses 08% 
calculated by means of (6.8) and (6.10) , expression (6.8) gives an error of not more than 
1.5% for 890.2. Obviously, (6.6) indeed possesses the same accuracy for which (6.8) is a 
special case. But expression (6.6) is also applicable for other CA shapes for which there 
are no exact solutions. 

Now let the CA boundary outline be determined by (3.1). We will consider the function 

f&4 in (3.1) to be an even function of qz. Expanding it in a Fourier series 

and substituting f.nto the second formula of (6.2), we obtain after integrating 

(6.12) 
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If (6.12) is substituted into (6.6), we obtain a formula to determine the stress (I, on 
the CA whose boundary outline is given by (3.1). 

Let us examine the special case of (3.1) when 

p = L1[i + 8 (1 + eos4m)l 

In this case f(cp) =i+eos4m and (6.12) yields 

F (r, 0) = i + (r/a)' CO8 48 
The examination of the case of a stamp with a non-planar base also does not present any 

difficulties in principle. 
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